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February 1, 2019

Supported by the grant APVV-16-0337.



Basic setting

X is a topological space.

EB is a family of all Borel subsets of X.



Warning!

measure 6= measure

measure = function m : EB → [0,+∞] such that m(∅) = 0

monotone measure

non-additive integrals
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Level sets and level measure

f

{x ∈ X; f(x) ≥ α}

α

1

hµ,f (α) = µ(f ≥ α) := µ({x ∈ X; f(x) ≥ α})

Integrals

I The Lebesgue integral (L)
∫
X

f dµ =
∞∫
0

µ(f ≥ α) dα

I The Choquet integral (Ch)
∫
X

f dµ =
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0

µ(f ≥ α) dα

I The Sugeno integral (Su)
∫
X

f dµ = sup
α>0

M {α, µ(f ≥ α)}
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Choquet, G.: Theory of capacities, Ann. Inst. Fourier 5 (1953), 131–295.

(Ch)
∫
X

hdµ :=

∞∫
0

µ ({x ∈ X : h(x) > α}) dα

0

rxm

m

rxp

p

rxe

e 0

µ{p}

xpxm

µ{m, p, e}

xe

µ{p, e}

(Ch)
∫

{m,p,e}

xi dµ = xm · µ{m, p, e}+ (xe − xm) · µ{p, e}+ (xp − xe) · µ{p}

= xm ·
(
µ{m, p, e} − µ{p, e}

)
+ xe ·

(
µ{p, e} − µ{p}

)
+ xp · µ{p}
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GRABISCH, M.: The application of fuzzy integrals in multicriteria decision making. European J. Oper. Res. 89 (1996), 445–456.

mathematics physics english mean

1 16 15 11 14

{m} {p} {e} {m, p} {m, e} {p, e} {m, p, e}

# 1
3

1
3

1
3

2
3

2
3

2
3

1

0

#{m} = 1
3

xm

=

16

xe

=

11

#{m, p, e} = 1

xp

=

15

#{m, p} = 2
3

(Ch)
∫

{m,p,e}
xi d# = 1

3
· 11 + 1

3
· 15 + 1

3
· 16



mathematics physics english mean µ-mean

1 16 15 11 14 14,6

2 11 12 19 14 13

{m} {p} {e} {m, p} {m, e} {p, e} {m, p, e}

µ 0,4 0,4 0,2 0,8 0,6 0,6 1

0

µ{e} = 0,2

xe
=

19

xm

=

11

µ{m, p, e} = 1

xp

=

12

µ{p, e} = 0,6

(Ch)
∫

{m,p,e}
xi dµ = 0,2 · 19 + 0,4 · 12 + 0,4 · 11



mathematics physics english mean µ-mean ν-Choquet

1 16 15 11 14 14,6 13,8

2 11 12 19 14 13 13,3

3 17 16 9 14 15,5 13,6

{m} {p} {e} {m, p} {m, e} {p, e} {m, p, e}

ν 0,4 0,4 0,2 0,6 0,9 0,9 1

0

ν{m} = 0,4

xm

=

17

xe

=

9

ν{m, p, e} = 1

xp

=

16

ν{m, p} = 0,6



A new concept - three steps to super level measures

metric space X premeasure σ : E ⊆ EB → [0,∞)

(A) Size. a function s : B(X)→ [0,+∞]E satisfying

(i) if |f | ≤ |g|, then s(f)(a) ≤ s(g)(a);

(ii) s(λf)(a) = |λ| s(f)(a) for each λ ∈ C;

(iii) s(f + g)(a) ≤ Cs s(f)(a) + Cs s(g)(a) for some fixed Cs ≥ 1 depending only on s.

A triple (X, σ, s) is called an outer measure space.

(B) Outer essential supremum. f ∈ B(X), b ∈ EB

outsup
b

s(f) := sup{s(f1b)(a); a ∈ E}

(C) Super level measure. (X, σ, s), f ∈ B(X), α > 0

µ(s(f) > α) := inf

{
µ(b) : b ∈ EB, outsup

X\b
s(f) ≤ α

}



Is a new concept useful?

DO Y., THIELE C.,Lp theory for outer measures and two themes of Lennart Carleson united, Bull. Amer. Math. Sci. 52 (2) (2015),

249–296.

I natural Lp theory for outer measures offers a unifying language for both Carleson
measure and time-freqency analysis

I gaining a streamlined view on time-frequency analysis was the original motivation
for their paper

I the outcome of a long evolution process

I a point of the paper is that in many examples of their interest the bound is a Hölder
inequality with respect to an outer measure

HALČINOVÁ L., HUTNÍK O., KISEL’ÁK J., ŠUPINA J., Beyond the scope of super level measures, Fuzzy Sets and Systems,

https://doi.org/10.1016/j.fss.2018.03.007.



Is a new concept useful outside of functional analysis?

Hopefully . . .



Three steps to super level measures - Y. Do and C. Thiele, modified

metric space X premeasure σ : E ⊆ EB → [0,∞)
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topological space X

monotone measure µ : EB → [0,∞)

@
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(X,E, s) a sub-Borel size space
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b

s(f)〈E〉
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A triple (X, σ, s) is called an outer measure space.

(B) Outer essential supremum. f ∈ B(X), F ∈ EB

outsup
b

s(f) := sup{s(f1b)(a) : a ∈ E}

(C) Super level measure. (X, σ, s), f ∈ B(X), α > 0 (X,E, s)

µ(s(f) > α) := inf

{
µ(b) : b ∈ EB, outsup

X\b
s(f) ≤ α

}
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Is the new concept a generalization of the original one?

For each α > 0 we may write

hµ,f (α) = µ({x ∈ X; |f(x)| > α}) = inf
{
µ(b) : b ∈ EB, (∀x ∈ X \ b) |f(x)| ≤ α︸ ︷︷ ︸

sup |f |[X\b]≤α

}
.

X

{x ∈ X; f(x) > α} {x ∈ X; f(x) ≤ α}



Is the new concept a generalization of the original one?
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How far is the new concept from the old one?

ssum(f)(a) =
∑
i∈a
|f(i)|

µ(ssum(f)〈E〉 > α) = inf

{
µ(b) :

∑
i∈X\a

|f(i)| ≤ α
}

?µ(s(f)〈E〉 > α) = m({x ∈ X; |Gf (x)| > βα})?

X = {a, b, c}

We assume that µ is strictly increasing with respect to the following order ≺ on Epower:

∅ ≺ {a} ≺ {b} ≺ {c} ≺ {a, b} ≺ {a, c} ≺ {b, c} ≺ X.

We define a function f on X as f(a) = 2, f(b) = 3, f(c) = 4.
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How far is the new concept from the old one?

Topological space X, Borel subsets EB, monotone measure µ : EB → [0,+∞]

I A new underlying set EB.
I A new induced monotone measure mµ : 2EB → [0,+∞]

mµ(F ) := inf{µ(a) : a ∈ EB \ F}.

I A new induced function tf : EB → [0,+∞]

tf (a) := outsup
X\a

s(f)〈E〉.

Proposition
Let (X,E, s) be a sub-Borel size space. Then for every f ∈ B(X) we have

µ(s(f)〈E〉 > α) = mµ({a ∈ EB : tf (a) > α}).

Proof. Just different notation:

µ(s(f)〈E〉 > α) = inf

{
µ(a) : a ∈ EB, outsup

X\a
s(f)〈E〉 ≤ α

}
=

= inf
{
µ(a) : a ∈ EB, tf (a) ≤ α

}
= mµ({a ∈ EB : tf (a) > α}).
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How good is the induced measure?

mµ(F ) := inf{µ(a) : a ∈ EB \ F}.

Proposition
Let X be a topological space and µ be a monotone measure on EB.

(a) mµ is superadditive.

(b) mµ(
⋂
A) = inf{mµ(A) : A ∈ A} for any A ⊆ 2EB .

(c) mµ is upper semicontinuous.



How good is the induced measure?

mµ(F ) := inf{µ(a) : a ∈ EB \ F}.

Lemma
Let X be a topological space and µ be a monotone measure on EB.

(a) If µ(a) = 0 and a 6∈ F then mµ(F ) = 0.

(b) If ∅ 6∈ F then mµ(F ) = 0.

(c) If a 6= ∅ then mµ({a}) = 0.

(d) If |Nµ| > 1 then mµ({∅}) = 0.

(e) mµ(F ) = 0 if and only if for any ε > 0 there is a 6∈ F such that µ(a) < ε.

(f) mµ(EB) = µ(X).

(g) µ(a) = mµ(EB \ {a}).

(h) mµ(F ) = inf{mµ(EB \ {a}) : F ⊆ EB \ {a}}.



What are properties of the induced function?

tf (a) := outsup
X\a

s(f)〈E〉.

Proposition
Let (X,E, s) be a sub-Borel size space, then for every f ∈ B(X) we have

(a) tf (∅) = supE∈E s(f)(E) and tf (X) = 0.

(b) tf is anti-monotone, i.e., tf (a2) ≤ tf (a1) whenever a1 ⊆ a2.

(c) If a1, a2 ∈ EB then tf (a1 ∩ a2) ≤ Cs(tf (a1) + tf (a2)).



What is next?

Question
What are properties of the smallest σ-algebra on EB such that all tf are measurable?

Question
Which topologies on EB do make tf Borel on EB?

Question
Are there other transformation methods?
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Thanks for Your attention!


