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Basic setting

X is a topological space.

Eg is a family of all Borel subsets of X.
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Level sets and level measure

{r e X; f(z) > a}
hyp(e) = p(f > a) == p({z € X; f(z) > a})

Integrals

> The Lebesgue integral (L) [ fdp = [ p(f > a)da
X 0

oo
» The Choquet integral  (Ch) [ fdu = [ u(f > a)da
b'e 0

> The Sugeno integral  (Su) [ fdp = sup M {a, u(f > @)}
X a>0



@ Choquet, G.: Theory of capacities, Ann. Inst. Fourier 5 (1953), 131-295.
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Choquet, G.: Theory of capacities, Ann. Inst. Fourier 5 (1953), 131-295.

(Ch) [ hdp:= [ p({z € X : h(z) > a}) da
[re=]
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(Ch) / zidp = zm - p{m,p,e} + (re — zm) - u{p, e} + (zp — ze) - u{p}
{m,p,e}

=am - (n{m.p.e} — uip.e}) +ze- (uip. e} — u{p}) +mp - u{p)



@ GRABISCH, M.: The application of fuzzy integrals in multicriteria decision making. European J. Oper. Res. 89 (1996), 445-456.
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A new concept - three steps to super level measures

metric space X ' y premeasure o : E C Eg — [0,00)

(A) Size. afunction's : B(X) — [0, +o0]E satisfying

@ if[f] < gl thens(f)(a) < s(g)(a);
(i) s(Af)(a) = |A|s(f)(a) foreach X € C;
(iii) s(f + g)(a) < Css(f)(a) + Css(g)(a) for some fixed Cs > 1 depending only on's.

A triple (X, o, s) is called an outer measure space.
(B) Outer essential supremum. feBX),beEp
outsups(f) := sup{s(f1p)(a); a € E}
b

(C) Super level measure. (X,0,s), feEBX),a>0

w(s(f) > «) :=inf {,u(b) : b€ Eg, outsups(f) < a}
X\b



Is a new concept useful?

B

Do Y., THIELE C., LP theory for outer measures and two themes of Lennart Carleson united, Bull. Amer. Math. Sci. 52 (2) (2015),
249-296.

natural L? theory for outer measures offers a unifying language for both Carleson
measure and time-fregency analysis

gaining a streamlined view on time-frequency analysis was the original motivation
for their paper

> the outcome of a long evolution process

a point of the paper is that in many examples of their interest the bound is a Hélder
inequality with respect to an outer measure

HALEINOVA L., HUTNIK O., KISELAK J., SUPINA J., Beyond the scope of super level measures, Fuzzy Sets and Systems,
https://doi.org/10.1016/j.fss.2018.03.007.




Is a new concept useful outside of functional analysis?

Hopefully ...



Three steps to super level measures - Y. Do and C. Thiele, modified

topological space X ‘ ’ M ' ’ prw) '

monotone measure 4 : Eg — [0, 00) ‘

(A) Size. afunction s : B(X) — [0, +oo)¥ satisfying

@) if[f] < gl thens(f)(a) < s(g)(a); Eg

(i) s(Af)(a) = |A|s(f)(a) for each A € C;

(iii) s(f + g)(a) < Css(f)(a) + Css(g)(a) for some fixed Cs > 1 depending only on's.

Atriple (X, o, s) is called an outer measure space.
(X,E,s) a sub-Borel size space
(B) Outer essential supremum. fe€BX), FeEg
outsups(f) := sup{s(f1p)(a) : a € E}
b

outsups(f)(E)
b

(C) Super level measure. (X,0,s), feEB(X),a>0 (X,E,s)

w(s(F)(E) > a) wu(s(f) > o) := inf {,u(b) : be Eg, Olﬁi}fps(f) < a}
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An example

sint(f)(a) = (L) [ [ f]dp

(B) Outer essential supremum. f € B(X),b e Eg, reasonable E

outsup s (/)(E) 1= sup{su(f1)(a) : a € B}

:sup{(L)/fdu: a € E}

anb
- / Fdu = su(£)(0)
b
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An example

sint(f)(a) = (L) [1f]dp

(C) Super level measure. (X,E,s), f€B(X),a>0

p(sint(f)(E) > a) := inf {y(b) : b€ Eg, outsupsin(f) < a}
X\b

inf{u(b): beEg, (L) / fdugoz}
X\b
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Is the new concept a generalization of the original one?

seo(f)(a) = sup | fl[a]

(B) Outer essential supremum. f € B(X),b € Eg, reasonable E

outsup soc (/) (E) = sup{s<(f11)(@) : a € )
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= sup | f|[b] = soo([f)(b)
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Is the new concept a generalization of the original one?

soo(f)(a) = sup|f][a]

(C) Super level measure. (X,E,s), feB(X),a>0

1(sint(f)(E) > a) :=inf {u(b) : b€ Ep, outsupse(f) < a}
X\b

=inf {u(b) : b€ Eg, sup|f|[b] < a}



Is the new concept a generalization of the original one?

For each a > 0 we may write

by s (@) = (e € X1 (@) > a}) = inf {u(b) :b € By, (Vo € X\ 1) |f(@)| <a }.

sup [ f|[X\b] <o

X

{z € X; f(z) > a} {z e X;f(z) <o}




Is the new concept a generalization of the original one?

For each a > 0 we may write

By (@) = p({z € X |f(@)] > a}) = inf {u(b) : b € By, (Ve € X\ 8) ()| < }.

sup | f|[X\b] <o

X

{z € X; f(z) > a} {reX; f(z)<a}
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How far is the new concept from the old one?

ssum (£)(a) = > |F(9)]

i€a

1(ssum (F)(E) >a)inf{u(b): S 1fG)] Sa}

i€X\a

2u(s(/)(E) > a) = m({x € X; |Gs(@)| > Bu})? |

X ={a,b,c}
We assume that 1 is strictly increasing with respect to the following order < on Epower:
0 < {a} < {b} < {c} <{a,b} <{a,c} < {b,c} < X.

We define a function f on X as f(a) =2, f(b) =3, f(c) = 4.
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How good is the induced measure?

my(F) :=inf{u(a): a € Eg\ F}.

Proposition
Let X be a topological space and 1. be a monotone measure on Ep.

(a) my, is superadditive.
() mu(NA) = inf{mu(A): A€ A} forany A C 2EB.

(¢) my, is upper semicontinuous.
i



How good is the induced measure?

my(F) :=inf{u(a): a € Eg\ F}.

Lemma
Let X be a topological space and p. be a monotone measure on Eg.

(@)
(b)
©
(d)
(©)
()
(8)
(h)

Ifu(a) =0anda ¢ F thenm, (F) = 0.

If0 ¢ F thenm, (F) = 0.

Ifa # 0 then m,, ({a}) = 0.

IfIN.| > 1 then m,, ({0}) = 0.

my (F) = 0 ifand only if forany € > 0 there is a ¢ F such that p(a) < e.

mu(Eg) = p(X).
p(a) = mu(Ep \ {a}).
myu(F) = inf{m,(Eg \ {a}) : F C Eg\ {a}}.



What are properties of the induced function?

ty(a) = og{tsup s(f)(E).

Proposition
Let (X, E,s) be a sub-Borel size space, then for every f € B(X) we have

(@) t7(0) = suppeg s(f)(E) and t(X) = 0.
(b) ty is anti-monotone, i.e., ts(a2) < ty(a1) wheneverai C as.

(c) Ifai,a2 € Eg thenty(a1 Na2) < Cs(ty(a1) + ty(az)).
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What is next?

Question
What are properties of the smallest c-algebra on Eg such that allt y are measurable?

Question
Which topologies on Eg do make ty Borel on Eg ?

Question
Are there other transformation methods?



Thanks for Your attention!



